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ELECTRICAL RESISTIVITY 
OF ALKALI-LEAD BINARY ALLOYS 

T. KHAJIL* 

Department of Physics, University of Jordan, Amman, Jordan 

(Received 8 June 1998) 

The electrical resistivity of liquid Li-Pb, Pb-K and Pb-Na binary alloys as a function 
of compassion has been calculated using Faber-Ziman formalism modified for finite 
mean free-path. The partial structure factors described by hard sphere model of Ashcroft 
and Langreth are used in the calculations. The nonlocal pseudopotentials of Heine- 
Abarenkov have been used also. The calculated resistivity values are in reasonably good 
agreement with the experiment. 

Keywords: Partial structure factors; pseudopotentials 

1. INTRODUCTION 

Electrical resistivity measurements on liquid Li- Pb, Pb-K and 
Pb-Na alloys exhibit a sharp peak at cpb = 21 at% for Li-Pb, at 
cpb = 49at% for Pb-K and at cpb = 20at% for Na-Pb [1,2]. The 
temperature derivative of resistivity dp/dT is extremely large and 
negative at the same compositions [3]. Van der mare1 et al., have 
attributed these effects to strong chemical interactions between the 
components. It is argued that the interactions tend to reduce the 
density of states at fermi level. 

The widely used Faber-Ziman (FZ) theory [4] for electron transport 
which is based on the relaxation time approximation for Boltzman 
equation, needs modification when applied to finite-mean-free path 1 

*Address for correspondence: Teacher’s College of Education Salalah, Salalah, P.O. 
Box 1905, Sultanate of Oman. 
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114 T. KHAJIL 

systems. This is because the Faber-Ziman formalism utilizes a 
perfectly sharp fermi surface. The finite mean free path corresponds 
to a finite uncertainty in the electron position. This in turn means a 
finite uncertainty in the electron momentum. Therefore, the Fermi 
surface is not perfectly sharp, but it is blurred. March and 
collaborators [ S ,  61 have taken this blurring into account by starting 
with the resistivity given in terms of the force-force correlation 
function. This treatment gives an integral equation for 1-based mainly 
on second order perturbation theory. We have used this approach for 
a number of finite-l liquid metals and alloys [7,8]. 

A self-consistent approach to the resistivity problem given by Ferraz 
and March was subsequently extended by Leavens et al. [6] and has 
been used successfully by Ascough and March (AM) [9] for expanded 
fluid rubidium. One of the most important improvements of this 
approach was the use of an non-local first-principles scattering 
potential. 

In this work a further application of the scheme outlined by AM is 
used to calculate the resistivity of the above mentioned alloys and 
compared to the FZ results. In the first approach a non-local Heine- 
Abarenkov pseudopotentials screened through a dielectric function 
that includes the influence of mean free path is used. 

2. THEORY 

2.1. Resistivity 

The resistivity for liquid metal binary alloys given by FZ can be 
written as 

PFZ = 37rm2 Srn dq q 3X(q)f3(2kf - q)  
4e2h3nkj o 

where 

Vi (q) denotes to electron-ion pseudopotentials while S, (q) is the 
partial structure factors. In all equations, c is used as the concentration 
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RESISTIVITY OF BINARY LIQUID ALLOYS 775 

of the second species and n is the conduction electron density related to 
Fermi wave number kf by: 

kf= ( 3 ~  2 n) 113 

In Eq. (l), 6 is the unit step function that cuts off the g-integration at 
(2kf) corresponding to a perfectly sharp Fermi surface. The finite 
mean-free-path corresponds to a finite uncertainty in the electron 
position. This is turn corresponds to a finite uncertainty in electron 
momentum. Thus, the Fermi surface is not perfectly sharp but its 
blurred. An attempt to take this blurring into account in the 
formulation of resistivity is given by Ferraz and March. Starting 
from the force - force correlation function formula for resistivity, they 
replaced Eq. (1) by 

arctan(@) -arctan 
2 

- 2 (g - ( f + 4ki)i)l (4) 

The above expression is obtained by borrowing an argument for 
simplification of the energy derivative of the Dirac density matrix u 
evaluated at Fermi energy. The mean free path I can be determined 
self-consistency by calculating PFM for 1 + 00 and then by using Drude 
relation 

p = L  Ak 
ne2e 

To find 1, then Eq. (3) and Eq. (5) are iterated to self-consistency. 
Ascough and March improved the work of Ferraz and March by 

including the influence of I on the bare-electron-ion pseudopotentials 
through the dielectric function of the perturbed electron gas. Ferraz 
and March give: 

- 
1 

a(k) =- 
1 + 4t2(k - kf)’ 1 + 4e2(k + kf)’ 
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776 T. KHAJIL 

Defining the function 

and 

where V(;, g), is the non-local screened electron-ion interaction and 
q‘= - k‘, so that the mean free path is found to be 

where 

The dielectric function will take into account influence of the mean 
free path 1 using: 

where 

x l n [  ((41)’ + 1 + 2kflq)’ + ( 2 k ~ e ) ~  
((4.l)’ + 1 - 2 k ~ Q ) ~  + (2kf t )2  

The local field term G(q) is independent of 1, and the form of this 
function used was due to Ichimaru and Utsumi [lo]. Finally the 
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RESISTIVITY OF BINARY LIQUID ALLOYS 717 

resistivity formula takes the form 

where lo is the mean free path value and is to be determined self- 
consistently from Eqs. (7), (8) and (9). The resistivity is calculated 
using Eq. (13), and in this case @la -+ I? evaluated at C = lo. 

2.2. Pseudopotentials 

The pseudopotentials used in these calculations are a non-local Heine- 
Abarenkov model potential [ 1 1 - 151. 

where V(q) is the local part of the unscreened potential and is given by 

87~A2 8rZ 
V(q)  = -- [sin(qR, - qRm) cos(qR,)] - --Icos(qRm). (15) &I2 Rq 

Also 

For k = k‘ and for k = k‘  

24rRi(A1- A2) (k2 + kI2 - q2) - 
R(k2 - kI2) 2kk‘ 
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778 T. KHAJIL 

Finally g(q) in Eq. (14) is defined by 

2.3. Structure Factors 

Our calculations were carried out with Ashcroft-Langreth hard 
sphere partial structure factors [15], the hard sphere diameters being 
obtained from pure metallic data as a function of temperature. The 
experimental densities of pure metals used here are taken from Waseda 
[16]. The packing fractions are calculated using the empirical law given 
by Waseda and kept constant throughout the concentration range. 

(19) ,,,, - A . ~ - B ~ T  
1 -  1 

The parameters Ai  and Bi appearing in this equation are taken from 
[16] also. The hard sphere diameters are calculated using 

where R* is the mean atomic volume in the alloy case and is related to 
the Fermi wave vector by 

Here Z *  is the mean valence. Both R* and Z *  were obtained by a 
linear interpolation of the pure metal values. 

3. RESULTS AND CONCLUSIONS 

Following the theoretical schemes outlined above, the effects of mean 
free path corrections to the Faber-Ziman resistivity formula were 
computed for Li - Pb, Na - Pb and K - Pb liquid binary alloys, using 
Ashcroft-Langreth model structure factors and non-local Heine- 
Abarenkov model potentials. For each step, a self-consistent mean 
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RESISTIVITY OF BINARY LIQUID ALLOYS 779 

free path was determined iteratively, using Eqs. (6)- (9) and when 
satisfactory convergence was obtained the corresponding resistivity 
was calculated. 

The input parameters for pseudopotentials and structure factors are 
given in Table I. The hard sphere diameters were calculated using 
Eq. (20) and the constants A ,  B were taken from Ref. [16]. 

The calculated structure factors, as a representative case, for 
Pb - Na are shown in Figure 1. 

Figures 2a and 2b show the calculated local and non-local 
pseudopotentials for Pb and Na at  c = 0.8 separately. From these 
figures we notice that the peak of the non-local potentials is greater 
than the local one and this affects the calculated resistivity values. The 
coworkers of Gasser [ 17 - 191 have discussed the effect of nonlocality 
on the calculation of resistivity extensively, for example. 

Using the same input parameters the resistivity has been calculated 
by two methods, one using (FZ) formula with local potentials and the 
other using the (AM) formalism with nonlocal potentials. The cal- 
culated resistivity values as a function of concentration for Pb-Na, 
Pb- K and Pb - Li are shown in Figures 3, 4 and 5 respectively along 
with the experimental values taken from Ref. [I]. The agreement 
between theoretical and experimental values are satisfactory for all 
alloys. The calculated peak value using the AM approach is slightly 
overestimated for all alloys while they are under estimated using (FZ). 
As discussed by Van Der Lugt et al. [ 1,2] the alkali - lead alloys exhibit 
a compound forming character at A4B and this character has been 
shown using the (AM) method where the mean free path effect has the 
main role in these results. Generally there is some shift of the peak 
position and this expected since the model structure factor used in 
these calculations need to be modified especially for these kinds of 
alloys. 

TABLE I Input parameters for LikPb, Pb-K and Pb-Na liquid metal alloys. 
Structural data are in atomic units and potential parameters are in rydbergs 

Metal n U An Ai A7 RM 
~ 

Li 0.00841 4.709 0.336 0.504 0.455 2.800 
Na 0.00359 6.253 0.305 0.339 0.402 3.400 
K 0.00187 7.781 0.240 0.256 0.368 4.200 
Pb 0.00459 5.764 1.920 2.000 0.900 2.100 
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FIGURE 1 Partial structure factors for Pb-Na. 
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FIGURE 2a Heine-Abarenkov model potential for Na. Solid line denotes nonlocal 
potential and dashed line denotes local one. 
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Heine-Abarenkov model potential for Pb. Solid line denotes nonlocal 
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FIGURE 3 The resistivity values for liquid Pb-Na. Solid line denotes AM resistivity, 
dashed line denotes FZ resistivity and dotted line denotes experimental values. 
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FIGURE 4 The resistivity values for liquid Pb-K. Solid line denotes AM resistivity, 
dashed line denotes FZ resistivity and dotted line denotes experimental values. 
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FIGURE 5 The resistivity values for liquid Li-Pb. Solid line denotes IS resistivity, 
dashed line denotes FZ resistivity and dotted line denotes experimental values. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
0
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



RESISTIVITY OF BINARY LIQUID ALLOYS 783 

In any case, the results establish that the modified finite mean free 
path effect and the nonlocal potentials alter significantly the calculated 
resistivity values for these alloys from that given by Ziman formula as 
discussed by [6]. 

We add here two other points: 

1. Since the resistivity values are most sensitive to the pseudopotential 
parameters employed in these calculations they have been kept 
constant throughtout the concentration range. 

2. The calculated resistivity values for each liquid alloy considered 
here have been found to be such that PAM > pFZ. This is in 
agreement with other calculations [6]. 

In addition, the full mean free path dependent screening function is 
employed in this work. 

To conclude, we observe that the inclusion of the mean free path 
effects in the screening function considerably improves the results. 
Furthermore we see that the Ascough-March formula with nonlocal 
potentials yields better agreement with observed resistivity values, 
because it includes in a self-consistent manner the mean free path for 
electron-ion scattering into the formalism of electron transport based 
on the force -force correlation approach. 
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